Children within institutional care settings experience significant global growth suppression, which is more profound in children with a higher baseline risk of growth impairment (e.g., low birth weight [LBW] infants and children exposed to alcohol in utero). Nutritional insufficiencies as well as suppression of the growth hormone–insulin-like growth factor axis (GH-IGF-1) caused by social deprivation likely both contribute to the etiology of psychosocial growth failure within these settings. Their relative importance and the consequent clinical presentations probably relate to the age of the child. While catch-up growth in height and weight are rapid when children are placed in a more nurturing environment, many factors, particularly early progression through puberty, compromise final height. Potential for growth recovery is greatest in younger children and within more nurturing environments where catch-up in height and weight is positively correlated with caregiver sensitivity and positive regard. Growth recovery has wider implications for child well-being than size alone, because catch-up in height is a positive predictor of cognitive recovery as well. Even with growth recovery, persistent abnormalities of the hypothalamic-pituitary-adrenal system or the exacerbation of micronutrient deficiencies associated with robust catch-up growth during critical periods of development could potentially influence or be responsible for the cognitive, behavioral, and emotional sequelae of early childhood deprivation. Findings in growth-restricted infants and those children with psychosocial growth are similar, suggesting that children experiencing growth restriction within institutional settings may also share the risk of developing the metabolic syndrome in adulthood (obesity, Type 2 diabetes mellitus, hypertension, heart disease). Psychosocial deprivation within any caregiving environment during early life must be viewed with as much concern as any severely debilitating childhood disease.

A syndrome of poor growth in socially deprived children has been recognized since the eponymous Kasper Hauser was discovered stunted and developmentally delayed at the Haller Gate of the city of Nuremberg on the morning of May 26, 1828. At the time of his abandonment at 16 years of age,
his pubertal development was delayed and he was only 145 cm (4 ft, 9 inches) tall. Profoundly impaired in all developmental areas and exhibiting a number of extremely odd behavioral and emotional characteristics, he eventually conveyed that he had spent most of his life on a diet of bread and water, living in a tiny “cage” 6- to 7-ft long, 4-ft wide, and 5-ft tall, virtually devoid of light, with a dirt floor, a straw bed, a woolen blanket, and a bucket in which to relieve himself (Money, 1992). During the late 19th and first half of the 20th century, psychosocial growth failure evolved from a curiosity to a well-recognized syndrome associated with neglect/abuse in both institutional and family settings (Blizzard & Bulatovic, 1996; Chapin, 1908, 1915; English, 1984; Gardner, 1972; Money, Annecillo, & Kelley, 1983; Spitz, 1945, 1946). As growth is arguably the key parameter for assessing health and well-being in children, the appalling global suppression of normal physical development was a harbinger of the pervasive developmental and medical problems documented in institutionalized children during the past 60 years (Beckett et al., 2002, 2007; Bruce, Tarullo, & Gunnar, 2009; Castle et al., 1999; Cermak & Daunhauer, 1997; Colvert et al., 2008; Croft et al., 2007; Geoffroy et al., 2007; Gunnar & Van Dulmen, 2007; Johnson, 2000; Kreppner et al., 2007; Marshall, Reeb, Fox, Nelson, & Zeanah, 2008; Nelson, 2007; Nelson, Furtado, Fox, & Zeanah, 2009; Nelson et al., 2007; O’Connor & Rutter, 2000; O’Connor, Rutter, Beckett, Keaveney, & Kreppner, 2000; Roy & Rutter, 2006; Rutter, 1998, 2008; Rutter, Colvert et al., 2007; Rutter & O’Connor, 2004; Rutter, Kreppner, & O’Connor, 2001; Sonuga-Barke et al., 2008; Stevens et al., 2008; Windsor, Glaze, & Koga, 2007; Zeanah et al., 2009; Zeanah, Smyke, Koga, & Carlson, 2005).

Contemporary work in this field can be traced to the descriptive report of Talbot and Sobel in 1947, who described patients with short stature they believed was caused by emotional disturbances (Talbot, Sobel, Burk, Lindemann, & Kaufman, 1947). For these 21 children who failed to grow and had poor appetites, psychiatric workup revealed a variety of diagnoses including chronic bereavement, maternal psychopathology, chronic poverty, and parental rejection. In three cases, psychiatric intervention led to improvement in appetite and enhanced growth.

Perhaps the most convincing early demonstration of how an adverse emotional environment affects growth took place after World War II in Germany, when British nutritionist Elsie Widdowson studied 50 children between the ages of 4 and 14 years in two small municipal orphanages within the British Zone of Occupation (Widdowson, 1951). A young, cheerful woman who was fond of children cared for one group of children and an older, stern woman who was a strict disciplinarian to all children except for a small group of favorites cared for the second group. During the first 6 months of observation, the children cared for by the younger woman gained weight and height far better than those in the orphanage governed by the strict matron, with the exception of her favorites who did quite well. During the second 6
<table>
<thead>
<tr>
<th>Classification</th>
<th>Type I:</th>
<th>Type IIa:</th>
<th>Type IIb:</th>
<th>Type III:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infantile</td>
<td>Hyperphagic</td>
<td>Nonhyperphagic</td>
<td>Anorexic</td>
</tr>
<tr>
<td>Age</td>
<td>Infancy</td>
<td>≥3 years</td>
<td>≥3 years</td>
<td>Infancy or later</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>Yes</td>
<td>Variable</td>
<td>Variable</td>
<td>Not usual</td>
</tr>
<tr>
<td>Bizarre behaviors</td>
<td>No</td>
<td>Usual (particularly hyperphagia)</td>
<td>Variable</td>
<td>No</td>
</tr>
<tr>
<td>Depression</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Growth hormone secretion</td>
<td>Normal</td>
<td>Decreased</td>
<td>Variable</td>
<td>Normal</td>
</tr>
<tr>
<td>Growth hormone responsiveness</td>
<td>Unknown</td>
<td>Variable</td>
<td>Variable</td>
<td>Variable</td>
</tr>
</tbody>
</table>

months, arrangements were made to provide additional rations to one of the orphanages and, concurrent with the improvement in daily calories, the caretakers shifted as well. During the second 6 months, despite receiving additional calories, the children in the orphanage managed by the stern matron grew poorly. Her favorites, who accompanied her to the other institution, again were the exceptions and gained weight and height better than either of the other two groups in the study. The children previously cared for by the strict matron and now cared for by the cheerful woman during the second 6 months rapidly gained weight and height despite no increase in calories. These early observations of growth failure in children raised under adverse conditions spawned a considerable body of literature during the ensuing decades categorizing three types (I, II, and III) and two subtypes (IIa and IIb) of growth failure (Table 3) based on age of onset, growth hormone (GH) kinetics/response, and behaviors exhibited by affected children (Blizzard & Bulatovic, 1996; Gardner, 1972; Gohlke, Frazer, & Stanhope, 2002; Gohlke, Khadilkar, Skuse, & Stanhope, 1998; Skuse, Albanese, Stanhope, Gilmour, & Voss, 1996). More than a dozen terms have been utilized (Table 4) in the pediatric endocrinology literature, but since the clinical presentation includes proportional short stature in most cases, psychosocial short stature emerged as the name most commonly used in recent years. However, although short stature may be a meaningful nomenclature for many children in the clinical literature, it does not seem appropriate for institutionalized children, because, in addition to short stature, these children frequently exhibit growth failure in weight and head circumference. Thus, a more inclusive term, *psychosocial growth failure* will be utilized in this report. Likewise, the term catch-up growth will refer not only to length/stature but weight and head circumference as well.
TABLE 4
SYNONYMS FOR PSYCHOSOCIAL GROWTH FAILURE

<table>
<thead>
<tr>
<th>Synonyms for Psychosocial Growth Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abuse dwarfism</td>
</tr>
<tr>
<td>Deprivation dwarfism</td>
</tr>
<tr>
<td>Deprivation syndrome dwarfism</td>
</tr>
<tr>
<td>Emotional deprivation</td>
</tr>
<tr>
<td>Nonorganic failure to thrive</td>
</tr>
<tr>
<td>Psychosocial deprivation dwarfism</td>
</tr>
<tr>
<td>Psychosocial dwarfism</td>
</tr>
<tr>
<td>Psychosomatic dwarfism</td>
</tr>
<tr>
<td>Psychosocial short stature</td>
</tr>
<tr>
<td>Reversible hyposomatotrophism</td>
</tr>
<tr>
<td>Reversible somatotropin deficiency</td>
</tr>
<tr>
<td>The “garbage can” syndrome</td>
</tr>
<tr>
<td>Transient hypopituitarism</td>
</tr>
</tbody>
</table>

GROWTH DURING AND AFTER INSTITUTIONAL CARE

Growth Suppression

A high incidence of growth failure in institutionalized children is a universal finding with every cohort reported to date showing moderate to severe suppression of height, weight, and head circumference (Johnson et al., 2010; Miller et al., 2009; Rutter, 1998; Smyke et al., 2007; The St. Petersburg-USA Orphanage Research Team, 2005; Van Ijzendoorn, Bakermans-Kranenburg, & Juffer, 2007). An exhaustive meta-analysis of 122 study outcomes in 33 papers on children placed for international adoption, most of whom had been institutionalized, documented large growth lags in all three parameters at the time of placement (Van Ijzendoorn et al., 2007). These findings were similar though quantitatively greater than the degree of growth suppression observed in children removed from their families due to neglect or abuse in Western Europe and the United States (King & Taitz, 1985; Olivan, 2003; Pears & Fisher, 2005; Wyatt, Simms, & Horwitz, 1997).

The desire of parents to adopt as young a child as possible has skewed the mean age of children generally included in growth studies of postinstitutionalized adoptees toward infancy and early childhood (6–44 months; Van Ijzendoorn et al., 2007). Only one study examined the effects of lifelong institutionalization into late childhood and adolescence (Himes et al., 2008). Growth data were collected between 1997 and 2001 in 255 children (5.00–18.99 years) housed in six Romanian neuropsychiatric institutions. All children had been institutionalized since birth under extreme circumstances of psychosocial deprivation. These children showed profound retardation in height, weight, and head circumference, with median z scores for height and weight ranging between −5.00 and −3.00 across the age range.
Two recent studies have expanded our knowledge of the biologic and environmental factors contributing to psychosocial growth failure and recovery in infancy and early childhood. The Bucharest Early Intervention Project (BEIP), the first randomized controlled study of foster versus institutional care, offered a unique opportunity to study growth in 124 otherwise healthy institutionalized (63 males) and 72 never institutionalized (31 males) Romanian children (Ghera et al., 2009; Johnson et al., 2010; Marshall & Fox, 2004; Marshall et al., 2008; Moulson, Fox, Zeanah, & Nelson, 2009; Nelson, 2007; Nelson, Parker, & Guthrie, 2006; Nelson et al., 2007; Parker & Nelson, 2005a, 2005b; Smyke et al., 2007; Windsor et al., 2007; Zeanah et al., 2003; Zeanah et al., 2005). These subjects, first assessed at 21 months (range 5.4–32 months), had measures of growth, caregiving environment, and cognitive development assessed before and at intervals following randomization of those to foster care versus institutional care as usual (Johnson et al., 2010). The Eastern European Growth Study (EEGS) followed a convenience sample of 138 children adopted at an average age of 20.4 months (range 7.3–58.9) who were first evaluated at an average of 17 days (range 5–37) after arrival in the United States. These subjects had measures of growth, dietary intake, and serum growth factors at intervals throughout the first 6 months in their adoptive homes (Miller et al., 2009). In both studies, gestational age was either not available or deemed unreliable. Therefore, it was impossible to say whether children were appropriate- or small-for-gestational age (SGA).

In BEIP and EEGS, baseline measures were significantly smaller and z scores \(<-2.00\) more frequent in institutionalized versus noninstitutionalized children. In multiple regression models, significant independent predictors of lower height z scores in BEIP and EEGS included increasing age and lower birth weight \(<2,500\) g; Table 5). Low birth weight (LBW) also independently predicted lower weight and head circumference in both studies. Children with probable prenatal alcohol exposure, a category with a significantly lower mean birth weight, was an independent predictor of lower height z scores and approached significance as an independent predictor of head circumference in EEGS.

Catch-Up Growth

Most children with psychosocial short stature have an immediate and dramatic surge in growth when removed from their hostile environment. This pathonomonic finding has been observed in postinstitutionalized children within adoptive families (Van IJzendoorn et al., 2007), institutionalized children for which the orphanage caregiving environment has been improved (The St. Petersburg-USA Orphanage Research Team, 2008), and in children in European and American child welfare systems placed within foster homes (King & Taitz, 1985; Olivan, 2003; Wyatt et al., 1997). Meta-analysis of growth
after adoption revealed almost complete catch-up in height and weight during childhood but less robust improvement in head size (Van Ijzendoorn et al., 2007). Earlier arrival in the adoptive family (<12 months of age) was significantly related to more complete catch-up in height. Catch-up growth in weight was somewhat better prior to 24 months but the results were not statistically significant. Age effect on head size (occipital frontal circumference, OFC) could not be determined due to the small number of published studies reporting sequential OFC measurements following adoption (Table 5).

In BEIP, growth within the group of institutionalized children randomized to foster care was compared to those randomized to ongoing institutional care as usual (Johnson et al., 2010). When growth was plotted at 6-month intervals during the first 18 months following randomization, the foster care group showed rapid increases in height and weight z scores during the first

<table>
<thead>
<tr>
<th>Predictors</th>
<th>BEIP z Score</th>
<th>EEGS z Score</th>
<th>META z Score</th>
<th>BEIP z Score</th>
<th>EEGS z Score</th>
<th>META z Score</th>
<th>BEIP z Score</th>
<th>EEGS z Score</th>
<th>META z Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Birth weight</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>High risk for fetal alcohol syndrome</td>
<td>↓</td>
<td></td>
<td></td>
<td>↓*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age or duration institutionalization</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Caregiving quality</td>
<td>ns</td>
<td>ns</td>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictors</th>
<th>ΔHeight z Score</th>
<th>ΔWeight z Score</th>
<th>ΔOFC z Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Low birth weight</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Age < 12 months</td>
<td>↑</td>
<td>↑</td>
<td>ns*</td>
</tr>
<tr>
<td>Baseline z score</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Postplacement caregiving quality</td>
<td>↑</td>
<td>↑</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note. —↑ = a positive and ↓ = a negative relationship between the dependent variable and the predictor ($p < .05$), ns = not significant.

*Trend for children ≤ 24 months to have more catch-up than children placed at >24 months.
12 months while those in the institutional care-as-usual group showed no improvement. Catch-up growth ceased as height and weight z scores approached the normal population mean following which significant changes did not occur between 12 and 18 months postrandomization. By 12 months postrandomization, the percentage of the foster care group in the normal range (≥ -2) had improved from 91% to 100% for height, 75% to 90% for weight, and 84% to 94% for weight-for-height. Multiple regression models accounted for significant variance in improvements in z for height, weight, and OFC. Significant unique predictors of greater improvement for all three included lower baseline z scores and younger age (<12 months) at randomization (Table 5). Neither gender nor LBW influenced catch-up growth. While LBW infants remained somewhat smaller at 42 months of age in BEIP, the difference was only significant for OFC.

Growth and Environment

BEIP is the only study that has been able to correlate growth in children living under adverse social circumstances with standardized measures of the caregiving environments. The Observational Record of the Caregiving Environment (NICHD Early Child Care Research Network, 1996) was adapted and used to assess caregiver-child interactions in both institutions and foster families (Smyke et al., 2007). The caregiving quality scores (CQS; range 1–4) were obtained by averaging five qualitative scores (i.e., detachment [reversed], flat affect [reversed], positive regard for child, sensitivity, and stimulation of development), each of which received a rating from 1 (not at all characteristic) to 4 (highly characteristic). CQS were significantly lower at baseline in the institutionalized versus noninstitutionalized group and were lowest for the youngest ages.

Two previous studies using parent perceptions of their child’s preadoption caregiving environment confirmed lower height in children experiencing parent-reported deprivation. Whereas one study showed a dose-dependent relationship between deprivation and lower linear growth at adoption (Kertes, Gunnar, Madsen, & Long, 2008), the other failed to confirm that finding (Johnson & Adoption Project Team, 2006). Within the range measured within the institutional environments in BEIP, caregiving quality was not a significant independent predictor of baseline growth; however, this may only indicate that even the best caregiving observed was below the threshold needed to support normal growth (Table 5).

Although growth clearly improves after children are removed from an adverse environment, whether variations in the improved caregiving environment affect catch-up growth, has never been directly explored. Previous work has indirectly addressed this issue. Taitz and King (1988) found that children
removed and placed in long-term foster care versus ongoing monitoring in their original home had the most marked improvement in height with 55% of these children increasing by more than 1.00 z score versus only 11% of those with ongoing exposure to their initial environment. Gohlke and colleagues found that 29 of 30 patients (97%) with psychosocial short stature treated with a long-term change in environment increased their height velocity versus 14 of 30 (47%) treated with social service intervention in their original home (Gohlke, Frazer, & Stanhope, 2004).

The hypothesis that catch-up growth is directly related to a child’s individual caregiving environment was tested in BEIP (Johnson et al., 2010). Following randomization, CQS in the foster care group improved substantially and did not differ significantly from the noninstitutionalized group. Individual CQS in the foster care group were positively related to change in height and weight but not head circumference z scores from baseline to 42 months of age. Components of CQS that correlated positively with catch-up in height and weight included sensitivity and positive regard for the child but not stimulation of cognitive development. Caregiver detachment was negatively correlated with height catch-up.

Catch-Up Growth and Cognitive Outcome

Based on reports of improved stature correlating with cognitive gains in stunted, cognitively impaired children treated with exogenous GH, the relationship between catch-up growth and cognition was investigated in BEIP (Johnson et al., 2010). Baseline developmental quotient, birth weight, and height catch-up were significant independent predictors of cognitive abilities at follow-up. Each incremental increase of 1.00 in standardized height scores between baseline and 42 months was associated with a mean increase of 12.6 points in verbal IQ.

Summary

Children within institutional care settings experience significant global growth suppression, which is more profound in individuals with a higher baseline risk of postnatal growth impairment (e.g., LBW infants and children exposed to alcohol in utero). Catch-up growth in height and weight are rapid when children are placed in a more nurturing environment. Potential for growth recovery is greater in children who are the most growth impaired, who are younger, and who are placed in more nurturing environments. Catch-up growth in height is an independent predictor of cognitive recovery.
MECHANISM INVOLVED IN GROWTH SUPPRESSION AND RECOVERY IN INSTITUTIONALIZED CHILDREN

Normal growth is a complex, multifactorial process dependent on adequate nutrition and appropriate production of endogenous growth factors. Both are likely to be affected by an institutional environment.

Malnutrition

Access to sufficient macro- and micronutrients to support growth is critically important and, worldwide, the most common cause of growth failure during childhood (Boersma & Wit, 1997). Nutritional demands will vary depending on growth rates at particular stages of development and whether preexisting deficits due to pre- or postnatal malnutrition exist. During the most rapid growth phase between birth and 18 months, the effects of even modest nutritional deficits become magnified particularly in LBW infants who are represented in disproportionately high numbers within institutional care settings (Johnson, 2000; Landgren et al., 2006; Miller et al., 2009; Smyke et al., 2007). With the time and fiscal constraints experienced by virtually all orphanages worldwide, it is highly unlikely that each child’s unique nutritional needs can be individualized within an environment where dietary plans and feeding protocols are strictly regimented.

Children also need the ability, desire, and opportunity to consume a diet sufficient to permit normal growth. Children with disabilities make up a high percentage of orphanage residents and many have significant neuromotor problems (cerebral palsy) or orofacial malformations (cleft lip/palate) that interfere functionally or anatomically with a child’s ability to eat (Johnson, 2000; Landgren et al., 2006; Rosenberg, Pajer, & Rancurello, 1992; The St. Petersburg-USA Orphanage Research Team, 2005). Many children are apathetic with no desire to eat. This phenomenon, part of a syndrome termed “hospitalism” by Spitz, was originally described in infants deprived of attention who showed evidence of anxiety, sadness, and retarded physical development. Mortality in these early descriptive studies was very high despite adequate food and meticulous care (Spitz, 1945, 1946).

Even when an appropriate diet is available and the child has the ability and desire to eat, they may lack the opportunity to consume adequate nutrition. In most institutions child-to-caregiver ratios are so high, it is difficult to adequately attend to even a child’s most basic needs (Muhamedrahimov, 1999). This problem is particularly acute in infants and young toddlers who are completely incapable of assisting with their care. In these situations, caregiver actions are based on efficiency and expediency rather than being responsive to child-based cues. Bottles are propped on pillows or the time spent feeding a child is abbreviated simply due to the volume of work. Various techniques
used to decrease feeding times such as enlarging the hole in the tip of the nipple, rapidly shoveling food into a child’s mouth while the child is prone, or the caregiver stands behind the child, can cause gagging, increasing the risk of oral aversion, which further complicates the feeding process (Cermak & Daunhauer, 1997).

Considering that institutionalized infants are highly vulnerable to insufficient intake, it is not surprising that subnutrition is felt to be the principal cause of deprivation-associated growth failure within this age group. Infants with this condition (Type I or the infantile form; Table 3) present with a generalized failure to thrive affecting all growth parameters, are described as depressed with a poor appetite, do not usually exhibit bizarre behaviors as is common in other types of deprivation-associated growth failure, and reportedly have normal GH secretion (Bakwin, 1949; Blizzard & Bulatovic, 1996; Rutter, 1981). A 30% incidence of wasting (weight-for-height z scores <-2.00) in institutionalized children below 12 months of age in BEIP appears to support the hypothesis that subnutrition is a major determinant in psychosocial growth failure at least in the youngest age group (Johnson et al., 2010). While nutrition remains important for children of all ages, outside of infancy and early childhood, there is less evidence that caloric deprivation is the primary factor in the etiology of psychosocial growth failure, because weight-for-height has generally been reported to be within the normal range (Blizzard & Bulatovic, 1996; Gohlke et al., 2002; Gohlke et al., 1998). Even in profoundly deprived Romanian children with markedly impaired growth in height and weight, body mass index (BMI) was generally in the low normal range (Himes et al., 2008).

Hypothalamic–Pituitary-End-Organ Suppression

Adequate substrate alone is insufficient for normal growth. Careful studies in the 1940s in hospitals and orphanages in New York by pioneers in this field, such as Harry Bakwin, Margaret Ribble, René Spitz, and Katherine Wolf, documented poor weight gain in institutionalized children receiving adequate calories (Bakwin, 1949; Gardner, 1972; Spitz, 1945, 1946). Production of a highly choreographed sequence of endocrine growth factors is required for optimal growth from fetal life through adolescence. While thyroxin, androgens, estrogens, and glucocorticoids all play important roles at various points in development, components of the growth hormone–insulin-like growth factor axis (GH-IGF-1) are requisite for optimal linear growth from fetal life through adolescence (Rosenfeld, 2003) and have been the subject of intense investigation over the past four decades in regard to psychosocial growth failure.

A full description of the role of the GH-IGF-1 axis in growth promotion is outside the scope of this discussion; however, basic information is helpful in
understanding what role the GH-IGF-1 axis may play in growth failure in institutionalized children (Figure 1). For further details, the reader is referred to the comprehensive review by Kemp and Frindik (2008). In brief, the release of GH from the pituitary is under the control of three peptides, two from the hypothalamus and one from the gastrointestinal tract. The hypothalamic peptides include GH-releasing factor that stimulates GH secretion and is under the control of the dopaminergic pathways, and somatostatin that inhibits GH release. Ghrelin, produced predominately in the stomach, also stimulates GH release, but the role of this peptide in normal physiology has not yet been elucidated. Following GH release, binding to the GH receptor in the liver stimulates production of insulin-like growth factor I (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3), and a glycoprotein termed acid labile subunit (ALS). All three components are low in GH deficiency and are restored when GH levels are normalized. IGF-1, tightly bound in a complex with IGFBP-3, and ALS is then transported to IGF-1 receptors in peripheral tissues. Binding of unbound IGF-1 to receptors on cartilage cells within the bone growth plate is probably responsible for stimulating the majority linear growth. Until the last few weeks of gestation, GH does not influence the hepatic production of IGF-1; hence, GH insufficiency has little effect on birth size but significant effects on postnatal growth (Gluckman et al., 1992; Mehta et al., 2005; Rosenfeld, 2003; Wit & Van Unen, 1992).

Definitive proof that the GH-IGF axis is altered in psychosocial growth failure dates from the reports of Powell and associates who documented

Figure 1.—Simplified diagram of the growth hormone–insulin-like growth factor axis. GH = growth hormone, IGF-1 = insulin-like growth factor 1, IGF-BP3 = insulin-like growth factor binding protein-3, ALS = acid labile subunit.
the association between emotional deprivation and abnormal GH kinetics in stunted, neglected children (Powell, Brasel, & Blizzard, 1967; Powell, Brasel, Raiti, & Blizzard, 1967). Unlike the infantile variety (Type I), which affects height, weight, and head circumference, Type II or the childhood variety (Table 3) affects primarily stature. In this syndrome, “failure to thrive” as classically defined by weight-for-height or BMI is often not present and some children are overweight. Children can be depressed and often exhibit bizarre behaviors such as hyperphagia, polydypsia, retarded speech, solitary play, temper tantrums, shyness, and enuresis (Table 6). GH secretion is reported to be decreased or absent. (Blizzard & Bulatovic, 1996). Data from EEGS are consistent with suppression of the GH-IGF-1 axis in institutionalized children, because levels of IGF-1 and IGFBP-3 were low in postinstitutionalized children at the time of adoption and IGFBP-3 was an independent predictor of height at the time of arrival (Table 5; Miller et al., 2009). While suppression of normal GH secretion is well documented in children with psychosocial short stature, treatment with exogenous GH has mixed results, particularly if a child’s environment is not improved. Therefore, GH “resistance” at the level of the GH receptor or in production, transport, or action of IGF-1 may also be a component in the pathophysiology of psychosocial growth failure.

The GH-IGF-1 axis is not the only hypothalamic–pituitary-based endocrine system affected by deprivation. Thyroid stimulating hormone levels may be low (Blizzard & Bulatovic, 1996), and many of the behaviors described, particularly disrupted sleep cycles, abnormal control of appetite, polydipsia, and enuresis suggest global hypothalamic–pituitary dysregulation.
Gonadotropin secretion is also impaired, and delayed puberty has been reported in cohorts of older emotionally deprived children (Gohlke & Stanhope, 2002; Himes et al., 2008). In Romanian children institutionalized since birth, timing of puberty, estimated by probit analysis of stages of pubic hair and breast development in girls and of pubic hair stages and testicular volume in boys, was delayed by approximately 2.5 years in girls and 1.5 years in boys compared to healthy children (Himes et al., 2008).

Apart from the GH-IGF-1 axis, the hypothalamic–pituitary–adrenal axis (HPA axis) has received the most attention as abnormal levels of stress hormones have been shown to correlate with poor cognitive (Lupien & McEwen, 1997) and emotional functioning (de Haan, Gunnar, Tout, Hart, & Stansbury, 1998; Schmidt et al., 1997) and with poor growth. Experiments with rodents have demonstrated the ability of acute stressors to increase the HPA axis hormone levels with a concomitant decrease in GH levels (Armario, Castellanos, & Balasch, 1984; Armario, Lopez-Calderon, Jolin, & Castellanos, 1986; Barbarino et al., 1990; Barinaga, Bilezikjian, Vale, Rosenfeld, & Evans, 1985; Brown & Martin, 1974; Kokka, Garcia, George, & Elliot, 1972; Kuhn, Pauk, & Schanberg, 1990; Rivier & Vale, 1985; Smith, Coplan, Trost, Scharf, & Rosenblum, 1997).

Early childhood adversity is known to profoundly affect the development of the HPA axis (Gunnar & Donzella, 2002; Gunnar & Quevedo, 2007; Gunnar & Quevedo, 2008). Within the context of institutional care, Carlson and Earls (1997) demonstrated that children living in Romanian orphanages had lower baseline morning cortisol levels and slightly higher evening levels compared to children living in enriched environments. This suppressed, atypical diurnal patterns of cortisol production with lower cortisol levels in the morning compared with controls has been described in additional groups of children living in or recently adopted from institutional care in Russia and China (Tarullo & Gunnar, 2006) as well as foster care in the United States (Dozier et al., 2006; Fisher, Gunnar, Dozier, Bruce, & Pears, 2006; Fisher, Stoolmiller, Gunnar, & Burraston, 2007). Bruce and colleagues further refined this observation by showing that children in U.S. foster care with low morning cortisol levels experienced more severe physical neglect (parental failure to provide adequate food, clothing, shelter, or medical care), whereas children experiencing more emotional maltreatment had high morning cortisol levels (Bruce, Fisher, Pears, & Levine, 2009).

Blunted morning cortisol levels may be a consequence of chronic stress and chronic activation of the HPA system (Fries, Hesse, Hellhammer, & Hellhammer, 2005; Gunnar & Vazquez, 2001; Heim et al., 2000). The postulated mechanism involves down-regulation of corticotropin-releasing factor (CRF) receptors in the pituitary in response to a persistent stress-induced elevation of CRF levels. Heightened CRF activity increases somatostatin production, which inhibits release of GH, while cortisol operates at the level of the liver.
to reduce responsiveness of the liver to GH and thus to reduce IGF-1 production. Thus, chronic activation of this stress-sensitive neuroendocrine system may play a role in reducing growth in institutionalized children.

The 1990s brought attempts to subdivide the childhood variety of psychosocial growth failure into additional diagnostic groups. In 1996, Skuse and colleagues defined what they believed to be to be a distinctive subgroup of older children with a normal BMI, suppressed GH production, and characteristic behavior problems centered on eating. Blizzard and Bulatovic (1996) suggested that this “hyperphagic short stature” syndrome be termed Type IIA. In studies of clinical populations of children outside of infancy, this presentation appeared to be the most common and have the most consistent findings. Type IIB was used to define a heterogeneous subgroup of nonhyperphagic patients with variable findings in terms of GH kinetics, improvement with change in environment, and response to GH treatment (Blizzard & Bulatovic, 1996). Boulton and colleagues described an additional group of children, later termed Type III by Blizzard and Bulatovich (1996), with anorexic eating habits, depression and/or attachment problems, and normal GH levels who had a greater response to exogenous GH administration (Boulton, Smith, & Single, 1992).

Before attempting to determine whether institutionalized children fit into one of these four previously described diagnostic categories, it is prudent to consider that all classification studies have relied on convenience samples of children referred to specialists for evaluation of short stature prior to or after entering the child protection system. Under these circumstances, basic social and medical information is lacking and it is virtually impossible to ascertain the type, severity, or duration of adversity experienced by these children. This absence of randomized controlled studies examining environment and growth as well as failing to take into account the effects of important growth-impairing medical conditions likely prevalent in this population, for example, LBW and fetal alcohol exposure (Johnson, 2000; Landgren et al., 2006; Miller et al., 2009; Miller et al., 2006, 2007; Smyke et al., 2007), may account for observed variations in the response of children to adversity and social intervention as well as the variety of growth failure subtypes described. An attempt to define additional growth parameters that could help distinguish among Types IIA, IIB, and III found more commonalities than differences (Gohlke et al., 2002). Children in all three groups experienced significant improvement in growth velocity after intervention. Some children in each group received GH plus social service intervention, but the effect of GH was indistinguishable from social service intervention alone, although the small sample sizes precluded rigorous statistical analysis. The conclusion was that all three types of childhood psychosocial short stature had two characteristic findings in common; otherwise unexplained growth failure occurring in association with socially stressful conditions (e.g., abuse/neglect) followed by
significant catch-up growth when the child’s environment is improved. It is important to note that these two pathomnemonic findings are characteristic of Type I or infantile psychosocial growth failure as well. Hence, the unifying theme of growth suppression with adversity and recovery with nurture is found in all four categories of psychosocial growth failure.

Further complicating delineating both the etiology of growth failure during adversity and whether the described subtypes truly represent different entities is that caloric deprivation and abnormalities of the GH-IGF-1 axis can produce similar clinical and laboratory findings. The hypothesis that psychosocial growth failure in infancy is predominately a nutritional problem is based on the assumption that weight-for-height or BMI is predominately an indicator of caloric sufficiency. This premise was called into question by the study of Mehta and colleagues who found that infants with isolated congenital GH deficiency had significant decreases in weight and height z scores as well as low BMI z scores (−1.80 at 6 months to −0.90 at 24 months) during the first 2 years of life despite reportedly normal caloric intake (Mehta et al., 2005). A decrease in lean body mass, a parameter influenced more by the GH-IGF-1 axis than caloric intake, was postulated as one possible mechanism for this unexpected finding. Likewise, malnutrition can cause GH insensitivity (Thissen, Underwood, & Ketelslegers, 1999) leading to significantly lower levels of IGF-1 and IGFBP-3 than in healthy subjects (Haspolat et al., 2007; Palacio, Perez-Bravo, Santos, Schlesinger, & Monckeberg, 2002).

Recovery

While it appears clear that improvements in environment and growth parallel one another, it is much more difficult to assess the relative contributions of improved nutritional intake versus endocrine recovery in catch-up. In one sense, the question is moot because both are required for appropriate growth, but the question of nutrition versus nurture has important policy and budgeting implications for child welfare systems that are institution-based.

During infancy when caloric needs are highest, children are more dependent, and caregiving quality is lowest (Johnson et al., 2010), placement into a foster or adoptive home will likely improve diet as well as individual attention and feeding technique. However, within the context of psychosocial growth failure during infancy, the presumption that alterations in caloric intake are both cause and cure is so strong that few have actually tested this hypothesis. Whitten and colleagues reported the only study that demonstrated that growth recovery in infants diagnosed with psychosocial growth failure was directly related to increased caloric intake (Whitten, Pettit, & Fischhoff, 1969). However, more recent work emphasizes the additional contribution of nurture on growth during early life. The St. Petersburg-USA Orphanage Research Team (2008) found that a social-emotional relationship intervention
without change in nutrition within an institutional environment improved growth for infants and young children. Work with LBW infants within the arguably stressful environment of a newborn intensive care unit has demonstrated better short-term weight gain, serum levels of insulin and IGF-1 despite identical caloric intake when infants received massage therapy (nurture?) for three 15-min periods a day (Field et al., 2008). There is, however, ample evidence that increased caloric intake is not the principal factor in growth recovery in previously described clinical populations of older children with psychosocial growth failure. In the study comparing characteristics of the three types of childhood psychosocial short stature (Types IIa, IIb, and III), BMI at presentation was within normal limits and did not increase significantly after intervention in any of the three subgroups (Gohlke et al., 2002).

Since the initial reports of Powell and associates, qualitative improvements in the caregiving environment have been associated with normalization of GH kinetics within days or weeks, although some patients exhibited delayed recovery or continued suppression (Gohlke et al., 2004; Powell et al., 1967; Powell et al., 1967). Other pituitary systems also demonstrate recovery. Substantial reconstitution of the diurnal pattern of cortisol secretion occurred within several months after improvement in the caregiving environment in children who were institutionalized or in foster care (Dozier et al., 2006; Fisher et al., 2006; Tarullo & Gunnar, 2006).

The observation that catch-up growth in height was the only significant independent auxologic predictor of cognitive abilities at 42 and 54 months suggests that the GH-IGF-1 axis may also play a role in cognitive recovery. The role of this complex system in cognitive development is supported by substantial experimental (Rodriguez, Gaunt, & Day, 2007; Scheepens, Modersheim, & Gluckman, 2005) and clinical evidence. In normal 8- to 9-year-old children, IGF-1 levels were shown to be positively related to IQ (Gunnell, Miller, Rogers, & Holly, 2005). Children with 18q deletions (Cody et al., 2005), Prader–Willi syndrome (Myers et al., 2007), or born SGA (Van Pareren, Duivenvoorden, Slijper, Koot, & Hokken-Koelega, 2004) conditions characterized by both short stature and cognitive delays, have shown significant improvement in height, IQ and brain structure following treatment with GH. Finally, children with defects in the GH receptor, have IQs and brain structural abnormalities that differ depending on which exon contains the point mutation or deletion (Shevah, Kornreich, Galatzer, & Laron, 2005).

Role of Genetics in Deprivation-Associated Growth Failure and Catch-Up

Whether genetics plays a role in either growth suppression during deprivation or catch-up following environmental improvement is essentially unexplored. Skuse et al. (1996) reported a hereditary predisposition in Type IIa or hyperphagic short stature. In this condition, a number of observations
including the description of a high rate of familial aggregation in full sibships of Type IIA-affected families led to the conclusion that this particular type of deprivation-associated growth failure is due to a highly influential gene inherited in a Mendelian pattern. Further investigation examined whether the genetic locus that predisposes to hyperphagic short stature coinherits with the Prader-Syndrome locus at 15q11–13. Although both conditions share the characteristics of GH insufficiency, hyperphagia, and mild learning deficits, no evidence was found in affected children of coinheritance of the Prader–Willi syndrome critical region (Gilmour, Skuse, & Pembrey, 2001).

Ongoing investigation on the role genetic factors play in the etiology and expression of both growth failure and recovery is clearly warranted, because recent work has identified a number of gene loci that are strongly associated with variations in human growth (Lettre et al., 2008; Sanna et al., 2008; Willer et al., 2009) and a number of mutations accounting for rare Mendelian disorders have been described in the GH-IGF-1 axis (Rodriguez et al., 2007; Rosenfeld, 2007; Rosenfeld et al., 2007; Savage et al., 2007). Perhaps most pertinent to this discussion is a GH receptor polymorphism in exon 3, consisting of the deletion (d3) or retention (fl) of the entire exon. More than half of healthy European subjects are either hetero- or homozygous for this isoform (Binder, Baur, Schweizer, & Ranke, 2006), which does not appear to influence final adult height (Audi et al., 2008; Kenth, Shao, Cole, & Goodyer, 2007) but may play a role in suboptimal fetal but enhanced postnatal growth (de Graaff, Meyer, Els, & Hokken-Koelega, 2008; Jensen et al., 2007; Tauber et al., 2007). Don Santos and colleagues (Raz et al., 2008) evaluated two cohorts of children of European descent with height z scores < −2.00 carrying the diagnosis of idiopathic short stature or SGA. Children carrying one or both of the d3 alleles grew approximately twice as well in response to GH treatment as those homozygous for the full-length isoform. Subsequent work with additional populations of children receiving GH have reported conflicting results, with some confirming the original findings and others showing minimal to no effect of the d3 isoform in response to exogenous GH (Audi et al., 2008; Buzi et al., 2007; de Graaff et al., 2008; Marchisotti et al., 2009; Raz et al., 2008).

Summary

Four different clinical types of growth failure in adverse social situations have been described in the clinical literature (Types I, IIA IIb, and III), although their similarities are more striking than their differences. All present with otherwise unexplained growth failure occurring in association with socially stressful conditions (e.g., abuse/neglect) followed by significant catch-up growth when the child’s environment is improved. Nutritional insufficiency as well as social deprivation contribute to the etiology of psychosocial growth failure within institutional care settings and influence.
recovery under more nurturing circumstances. Under more nurturing conditions the GH-IGF-1 and HPA axes functioning returns to normal in most children. Not only is GH-IGF-1 axis important in terms of improvements in size but it may also play a beneficial role in cognitive recovery as well. Chapter III outlines the problems of applying conventional attachment classifications in institutionalized children. Likewise, the three types and two subtypes of growth failure described in clinical populations are not particularly helpful or informative within the context of psychosocial growth failure in institutionalized children. Considering the possible role of genetics, the findings that medical conditions such as SGA and alcohol exposure worsen deprivation-associated growth failure and that caregiving environment and age significantly influence catch-up, all four types must be re-examined to determine if they are truly unique diagnostic entities or merely variations on the common theme of growth suppression during deprivation and recovery with nurture.

LONG-TERM EFFECTS OF MEDICAL EFFECTS OF EARLY ADVERSITY AND PSYCHOSOCIAL GROWTH FAILURE

Endocrine Dysregulation

The earlier onset of puberty in international adoptees, first reported in 1981 by Adolfsson and Westphal, was subsequently confirmed in a number of retrospective studies (Adolfsson & Westphal, 1981; Bourguignon et al., 1992; Mason & Narad, 2005; Proos, Hofvander, & Tuvemo, 1991a, 1991b; Teilmann, Pedersen, Skakkebaek, & Jensen, 2006). This phenomenon of early sexual maturation is of particular concern to adoptive parents, not only because early puberty compromises final height by shortening the childhood growth period, but those who mature earlier tend to suffer from mental health problems, especially depression, engage in earlier sexual exploratory behavior, and may exhibit more externalizing behaviors (Graber, Lewinsohn, Seeley, & Brooks-Gunn, 1997; Johansson & Ritzen, 2005; Michaud, Suris, & Deppen, 2006; Sonis et al., 1985; Sonis et al., 1986; Weissenberger, Leschek, & Zametkin, 2001). In addition, it is yet one more reason adopted children differ from their nonadopted peers. These vulnerabilities may contribute to the development of and/or aggravate emotional difficulties and conduct problems, which are more prevalent during early adolescence in postinstitutionalized children (Colvert et al., 2008; Graber et al., 1997; Johansson & Ritzen, 2005; Michaud et al., 2006; Rutter, Kreppner et al., 2007).

Four recent studies have significantly improved our knowledge on the incidence and relative risk, gender differences, changes in the timing of puberty, risk factors, and pathophysiology of this condition. Soriano-Guillén
and colleagues reported a national survey on central precocious puberty from 34 pediatric endocrinology clinics in Spain involving 250 patients (Soriano-Guillen et al., 2010). Teilmann and colleagues reported on two groups of international adoptees: one group with precocious puberty identified through a search of the Danish Civil Registration System (Teilmann, Pedersen, Skakkebaek, & Jensen, 2006) and a longitudinal cohort study of 276 randomly recruited internationally adopted girls (4–13 years of age) followed with biannual examinations over a period of 2 years (Teilmann et al., 2009). Proos (2009) retrospectively analyzed data from 107 Indian girls adopted to Sweden, and Sonuga-Barke and colleagues (Sonuga-Barke, Schlotz, & Rutter, 2010) longitudinally followed growth and development from early childhood through mid-adolescence in 144 postinstitutionalized children adopted from Romania.

In children born in Spain and not adopted, the overall incidence for the population at risk for central precocious puberty (onset of puberty <8 years for girls and <9 years for boys) was 5.39 (4.61–6.26) per million person-years at risk; 10.73 (9.1–12.56) for girls and 0.97 (0.57–1.5) for boys (Soriano-Guillen et al., 2010). The overall incidence in adoptees (international and domestic) was markedly higher at 150 (108.9–201.4); 265.8 (189–363.7) for girls; and 34.08 (19.99–38.77) for boys. The overall relative risk of central precocious puberty in internationally and domestically adopted children compared to those born in Spain was 27.82 (19.99–38.77). The findings were similar in the Danish national study where international adoptees had an overall relative risk of 10.62 (7.95–14.18), compared to children with Danish backgrounds (Teilmann, Pedersen, Jensen, Skakkebaek, & Juul, 2005). Additionally, the Spanish study was the first to confirm an increased relative risk of 18.28 (8.57–38.98) in domestic adoptees as well.

In the Danish cohort studied longitudinally, mean age of breast development was 9.5 years and mean age of menarche was 12.1 years, both significantly earlier compared to the reference group of Danish-born girls (Teilmann et al., 2009). The normal probability curves for pubertal changes as a function of age paralleled those for Danish girls but were displaced 1.3 years earlier for both breast development and menarche. Consequently, a large proportion of international adoptees (16%) entered puberty prior to 8 years of age and met the age criteria for the diagnosis of central precocious puberty. Proos (2009) found an earlier median age of menarche (11.6 years) in Indian adoptees to Sweden that was significantly lower than Swedish girls as well as privileged Indian girls residing in India. Puberty in the adopted cohort started 1.5 years earlier (Proos, 2009).

A reasonable question is whether this is true early puberty in adopted children or merely normal pubertal changes occurring on the timeline of children in the country of origin. However, scrutiny of the pediatric endocrinology literature leaves little doubt that sexual maturation in adopted girls is earlier
GROWTH FAILURE IN INSTITUTIONALIZED CHILDREN

than expected when compared to children in their sending countries (Teilmann et al., 2009). Neither does this increased risk appear to be related to physical relocation of a child to a different environment or perhaps due to environmental exposures in their country of origin prior to immigration as suggested by Krstevska-Konstantinova et al. (2001), as the relative risk of precocious puberty is increased in domestic adoptees in Spain (Soriano-Buillen et al., 2010). In addition, the relative risk of precocious puberty in children immigrating with their parents was no different in Spain (1.55 [0.97–2.38]) (Soriano-Guillen et al., 2010) and only marginally increased in Denmark (1.56 [1.02–2.37]) (Teilmann et al., 2006).

The finding of an early but otherwise normal pubertal rise in pituitary and ovarian hormones that predate external signs of sexual maturation (Teilmann et al., 2009) suggests that puberty is centrally driven through the hypothalamic-pituitary axis, rather than being caused by exposure to environmental agents that mimic the actions of hormones (Krstevska-Konstantinova et al., 2001). Why central mechanisms are activated early is unknown, but two risk factors have been postulated. Growth restriction in early life followed by rapid weight gain during infancy and early childhood has been associated with early puberty (Dunger, Ahmed, & Ong, 2006; Hokken-Koelega, 2002; Ibanez, Potau, Francois, & de Zegher, 1998; Lazar, Pollak, Kalter-Leibovici, Pertzelan, & Phillip, 2003; Van Weissenbruch, Engelbregt, Veening, & Delemarre-Van de Waal, 2005). In Indian girls adopted to Sweden, those children most stunted at the time of arrival and experiencing the greatest catch-up growth had the earliest menarche (Proos, 2009). The other potential risk factor commonly shared by adopted children is a period of psychosocial deprivation prior to adoption. In the study of postinstitutionalized Romanian children, the group who had spent >6 months within institutional care prior to adoption had a significantly higher frequency of puberty indicators at age of 11 years than the comparison group consisting of within UK adoptees and Romanian adoptees spending <6 months within institutional care (Sonuga-Barke et al., 2010). In both Danish studies, the relative risk of early puberty was significantly increased in international adoptees from all areas of the world with the exception of Korea, a country where children are placed in foster rather than institutional care while awaiting adoption (Teilmann et al., 2006; Teilmann et al., 2009).

Long-term dysregulation of the posterior pituitary has been described as well. Fries and colleagues reported lower baseline arginine vasopressin levels in the urine of postinstitutionalized children versus controls approximately 3 years after placement (Wismer Fries, Ziegler, Kurian, Jacoris, & Pollak, 2005). After a short period of interaction with their own mothers, postinstitutionalized children failed to show elevation in oxytocin levels, which is expected in control children in response to social stimulation. The authors speculated that alterations in the oxytocin and vasopressin neuropeptide systems,
which are critical in establishing social bonds and the regulation of emotional behaviors, are adversely affected by deprivation and may contribute to the social and emotional problems seen in this population of children.

Metabolic Syndrome

Striking parallels exist in children with psychosocial growth failure and SGA infants, another growth-impaired pediatric population experiencing early growth impairment (nutritional) followed by recovery. Both groups share a higher incidence of disturbed GH secretion with lower levels of IGF-1 and IGFBP-3 (Albertsson-Wikland, Boguszewski, & Karlberg, 1998) as well as earlier and accelerated pubertal development particularly in girls (Hokken-Koelega, 2002; Ibanez et al., 1998; Lazar et al., 2003; Van Weissenbruch et al., 2005). Programing of the HPA axis in association with an adverse environment in early life for SGA infants is felt to be a key component in the cascade of changes that ultimately increases the risk for developing the metabolic syndrome (obesity, Type 2 diabetes mellitus, hypertension, heart disease, and polycystic ovary syndrome) (Clark, 1998; Jones et al., 2006). Reduced size at birth (SGA) has been shown to be associated with an enhanced biological response to stress in adults (Jones et al., 2006). In Romanian adoptees evaluated 6.5 years after adoption, children reared in orphanages for more than 8 months in their first years of life had higher cortisol levels over the daytime hours than did early adopted (≤4 months) or Canadian-born children. The longer beyond 8 months that these children remained institutionalized the higher their cortisol levels (Gunnar, Morison, Chisholm, & Schuder, 2001). In international adoptees from multiple countries evaluated from 3.3 to 11.6 years after arrival, preadoption deprivation predicted growth delay at adoption, which, in turn, predicted higher morning cortisol levels and a larger diurnal cortisol decrease (Kertes et al., 2008). Even in children who remained institutionalized, those who demonstrated growth recovery within the orphanage had normal diurnal variation in cortisol levels but higher daily cortisol production than both chronically stunted institution-reared or family-reared children (Dobrova-Krol, Van Ijzendoorn, Bakermans-Kranenburg, Cyr, & Juffer, 2008). In the only longitudinal follow-up of postinstitutionalized children into adolescence, by 15 years of age, the group of postinstitutionalized Romanian adoptees who had spent >6 months within institutional care prior to adoption were beginning to trend higher in weight than in height suggesting a tendency toward obesity (Sonuga-Barke et al., 2010). Whether growth failure associated with social deprivation during early life places affected children at the same risk for developing the metabolic syndrome as those born SGA (Fernandez-Twinn & Ozanne, 2006; McMillen & Robinson, 2005; Silveira, Portella, Goldani, & Barbieri, 2007; Wells, 2007) is unknown, but clearly close
medical follow-up is warranted to identify conditions associated with significant long-term morbidity and mortality.

Final Height

Although robust catch-up growth postadoption is encouraging, the odds for achieving full, innate growth potential may be diminished in children within institutional care because of a combination of risk factors including earlier puberty, prenatal growth deficiency, and growth retardation within the institutional care environment. The meta-analysis of postadoption growth in younger children confirmed this risk by demonstrating good catch-up during early and middle childhood but significant lag in height during adolescence and young adulthood compared to the reference population (Van IJzendoorn et al., 2007). Gohlke and Stanhope (2002) examined final adult height in 18 individuals with psychosocial growth failure diagnosed in late childhood and early adolescence (mean age 10.7 years, range 5.7–14.0 years) who benefited from placement in foster care or experienced an improved home environment through social service intervention. While children experienced catch-up growth and most (78%) had a near final height within the normal mid-parental target range ($\pm 2\ SD$) of their biological parents, mean final height was significantly shorter (z score $= -2.40$) than the mean of the mid-parental target height (-1.50). In postinstitutionalized Romania adoptees spending longer than 6 months within institutional care, by 15 years of age, height was $-1.07\ SD$ and weight $-0.82\ SD$, both significantly different from the pooled comparison group (Sonuga-Barke et al., 2010). In Indian girls adopted to Sweden, final height for age was $-1.4\ SD$ and final weight for age was $-1.1\ SD$. LBW, stunting prior to adoption, and early puberty all appeared to contribute to compromised adult height (Proos, 2009).

Since psychosocial growth failure appears, in large part, to be mediated through the GH-IGF-1 axis, it is instructive to compare adult heights in non-treated and treated GH-deficient children. Untreated children had a mean adult height z score of -4.70 (range -6.10 to -3.90). Those children with GH deficiency treated with recombinant GH had final adult height z scores of -1.40 to -0.50 in women and -1.30 to 0.07 in men (Frindik & Baptista, 1999) similar to those reported in preadoption psychosocial growth failure. Positive correlates of height outcome in GH-deficient children treated with exogenous GH included duration and continuity of GH administration, age of initiation of treatment, GH dose, and the growth rate during the first year of treatment. Delayed onset of puberty also appeared to enhance adult height in some studies (Bourguignon et al., 1986; Price & Ranke, 1994). Based on these observations, correlates for a more normal adult height in children with psychosocial growth failure would likely include an earlier age at placement,
a more rapid normalization of the GH-IGF-BP3 axis (nurture and nutritional environment), and a normal or late onset of puberty.

Catch-Up Growth and Micronutrient Insufficiency

Iron, a micronutrient critical for both erythropoiesis and brain development, is particularly vital in the first few years of life when rapid growth and development are occurring. Iron deficiency, not limited only to iron deficiency anemia but also to deficiency of lesser severity, may have long-term effects on brain development and subsequent cognitive and behavioral development (Georgieff, 2006, 2007, 2008; Lozoff & Georgieff, 2006). Iron status and dietary intake was studied in a subgroup of EEGS participants (Fuglestad et al., 2008). At adoption, mean percent transferring saturation and mean corpuscular volume were low compared with the U.S. population. Participants with Giardia lamblia at baseline, an intestinal parasite that interferes with iron absorption, had more compromised iron status at arrival.

Despite improvement in the caregiving and dietary environment, compromised iron status persisted 6 months after adoption. Mean serum ferritin concentration became lower than the U.S. population at follow-up, although the mean daily iron intake was more than the Recommended Dietary Allowance. During periods of rapid catch-up growth after growth restriction, iron is preferentially shunted away from storage (e.g., liver) and nonstorage (e.g., heart and brain) tissues in the service of increased requirements for erythropoiesis that accompanies the growth spurt (Georgieff, 2006). In this study, iron intake was related to slight improvements in red blood cell functional indices, indicating that dietary iron was likely being used for erythropoiesis. However, growth rate (change in height z scores) was negatively correlated with change in serum ferritin concentrations between baseline and follow-up ($r = -0.34; p < .05$).

Previous studies that have shown rapid growth to increased iron demand (Georgieff, Wewerka, Nelson, & Deregnier, 2002). Within the context of a significant degree of iron deficiency at adoption, preferential shunting of iron into erythropoiesis during catch-up growth, and initial and perhaps ongoing Giardia lamblia infection, dietary intake was insufficient to replenish iron stores during the 6-month follow-up period. Therefore, among the many risk factors that predispose institutionalized children to abnormal brain development, robust catch-up growth adds the additional risk of persistence or even development of brain iron insufficiency. These data suggest that other micronutrients critical for brain development (e.g., zinc, copper, selenium, iodine) may be affected as well (Georgieff, 2007).
Summary

Although catch-up in height and weight is rapid and postinstitutionalized children are well within the normal range during childhood, many factors, particularly early and more rapid progression through puberty in girls, compromise final height. There is also reason for concern that children with psychosocial growth failure may share the risks with SGA infants of developing the metabolic syndrome (obesity, Type 2 diabetes mellitus, hypertension, heart disease). Even if growth recovers, persistent abnormalities of the hypothalamic-pituitary-adrenal system or the presence of micronutrient deficiencies during critical periods of development could potentially influence or be responsible for the cognitive, behavioral, and emotional sequelae of early childhood deprivation.

CONCLUSIONS

From this review, three significant themes emerge with relevance to the care of institutionalized children in regards to children’s growth. Infants who are LBW are particularly vulnerable to the effects of social deprivation and should be the first triaged to family care. The unique nutritional needs of LBW infants are unlikely to be appreciated, and even if they were, dependence on conformity in orphanages makes it unlikely that these children will receive the individualized nutritional interventions needed to optimize growth. Growth at baseline in institutionalized LBW infants is particularly impaired, consistent with the global growth failure described in LBW infants who experienced social deprivation in birth families (Elgen, Johansson, Markestad, & Sommerfelt, 2005; Emond, Lira, Lima, Grantham-McGregor, & Ashworth, 2006; Kelleher et al., 1993). LBW infants also have a higher risk for smaller head (brain) size even after placement in a more nurturing environment, a finding that has also been observed in LBW infants exposed to social deprivation within the family (Emond et al., 2006; Escalona, 1982; Kelleher et al., 1993). Second, the early sensitive period for growth recovery (<12 months) similar to the early sensitive period for cognitive recovery previously described (Nelson et al., 2007) necessitates placement within family care as quickly as possible. Third, although family care is important, higher quality caregiving within the institutional environment would help to ensure the best outcomes. In situations where family care is not an option, any improvement in the diet and/or caregiving environment within institutions would improve outcome. However, the inertia of tradition as well as limited human and financial resources hinders accomplishing this goal in most situations.

Growth, particularly in stature, proves not only to be a useful biologic measure of caregiving environment but also an informative indicator of cognitive
improvement in at-risk children. As countries heed the call to eliminate institutions by developing kinship and foster care, postplacement growth could be used as a cost-effective marker of caregiving quality and child well-being pending sufficient staffing and funding of more comprehensive social services programs.

The significance of the findings in psychosocial growth failure extends beyond the millions of institutionalized children worldwide to the impoverished hundreds of millions that are stunted and/or do not meet their developmental potential. Institutions may provide a greater likelihood of exposure to toxic levels of stress, but these observations on the interaction of deprivation and growth are almost certainly valid in populations of children stressed by other factors such as poverty and conflict. The interdependence of nutrition and social environment on child outcomes has recently received attention in regard to achieving UN Millennium Development Goals (Black et al., 2008). The study of growth in institutionalized children adds strong experimental support to the conclusion of Black et al. that strategies that fail to address nurture along with health and nutrition will likely fail to achieve significant improvements in overall child well-being (Black et al., 2008). Psychosocial deprivation within any caregiving environment during early life must be viewed with as much concern as any severely debilitating childhood disease.

REFERENCES

puberty in 276 girls examined biannually over two years. *Hormone Research in Paediatrics, 72*(4), 236–246.

